Những thành tựu và triển vọng của việc nghiên cứu ứng dụng RNAi Can_thiệp_ARN

Tạo Hoa Hồng Xanh

Trong cây trồng có một loại phân tử được gọi là anthocyanin được coi là sắc tố chủ đạo trên hoa, trái và các mô tế bào khác. Thông thường các màu chính của hoa bắt nguồn từ anthocyanin với sự có mặt của một ít các chất carotenoid màu vàng. Ngoài ra anthocyanin dihydrokaempferol (DHK) lại là một enzyme chi phối cho cả ba chu trình hình thành sắc tố trên cây trồng bao gồm: cyanidin, pelargonidin và delphinidin.

Gene cyanidin mã hóa một enzyme làm thay đổi enzyme DHK nhằm hình thành chu trình cyanidin dẫn đến biểu hiện các màu đỏ, hồng hay màu tím hoa cà. Trong khi đó gene delphinidin không hiện diện trong cây hoa hồng sẽ mã hóa một enzyme khá tương đồng cho việc thay đổi enzyme DHK nhằm hình thành sự tổng hợp màu theo chu trình delphinidin. Một loại enzyme khác có tên gọi là dihydroflavinol reductase (DFR) sẽ hỗ trợ các màu chỉ chị trong cả ba chu trình trên. Enzyme này rất quan trọng vì không có nó sẽ không thể tạo màu trên các cánh hoa. Chính vì vậy mà các đột biến gene DFR đều cho ra những hoa có màu trắng. Trong hoa hồng không có gene delphinidin để hình thành màu theo chu trình của nó. Chu trình delphinidin có thể hình thành màu đỏ hoặc xanh trên hoa dưới sự tác động của DRF và pH.

Để tạo ra bông hồng xanh, các nhà khoa học của Suntory đã áp dụng một bộ 3 gene. Một gene nhân tạo được dùng cho kỹ thuật RNAi nhằm ức chế gene DFR của hoa hồng làm cho hoa hồng không biểu hiện màu. Sau đó chuyển gene delphinidin từ loài hoa păng-xê và gene DFR từ loài hoa iris sẽ tạo ra hoa hồng có hàm lượng delphinidin rất cao trong cánh hoa. Tuy nhiên cũng phải lưu ý một yếu tố ảnh hưởng đến màu xanh trên cánh hoa đó chính là độ pH tế bào và đó là một trong những lý do chính là tại sao các loài hoa có cùng chu trình anthocyanin nhưng lại có màu khác nhau. Khi nồng độ pH tế bào mang tính kiềm thì sắc tố của anthocyanin thường trở nên xanh hơn. pH của đất không ảnh hưởng hay ảnh hưởng rất ít đến pH tế bào cánh hoa. Nồng độ pH tế bào cánh hoa thường mang tính di truyền. Cánh hoa hồng thông thường có nồng độ pH khoảng 4.5 chính vì vậy để tạo ra các cánh hoa hồng có nồng độ pH thấp thì rất hạn chế. Vì vậy các nhà khoa học mới nghĩ đến kỹ thuật ức chế gene bằng kỹ thuật RNAi nhằm xác định những gen ảnh hưởng đến tính axít của cánh hoa hay điều chỉnh màu của cánh hoa theo những hướng khác.

Ứng dụng cơ chế can thiệp RNA trong nghiên cứu ung thư

Tế bào ung thư phát sinh từ sự tích lũy và chọn lọc nhiều đột biến có liên tiếp có lợi cho sự phân chia và tồn tại của chúng. Những biến đổi di truyền và đôi khi trên vật chất di truyền (epigenetic) giúp tế bào ung thư vượt qua sự khống chế của các nguyên tắc điều hòa tế bào và cơ thể như chương trình tự sát tế bào (apoptosis) hay các tín hiệu kìm hãm phân chia (antiproliferative signals). Sự khám phá ra cơ chế can thiệp RNA không lâu được nhận thức rằng đây chính là công cụ cần thiết để dò tìm các cơ chế phân tử bị thay đổi trong tế bào ung thư. Do tính đặc hiệu của quá trình can thiệp RNA kết hợp với tính dễ dàng nhân rộng tiến trình thực nghiệm từ hàng ngàn gene lên tới toàn bộ genome trong một thí nghiệm, hệ thống các "điểm yếu" của ung thư sẽ được giải mã và hàng loạt thuốc đặc hiệu ung thư sẽ được điều chế.

Các nhà khoa học Austaylia đã tìm ra phương pháp mang tên "con ngựa thành Troy" có khả năng tiêu diệt trực tiếp tế bào ung thư mà không gây tác dụng phụ với cơ thể người.

Cụ thể, các nhà khoa học sử dụng một tế bào nano có tên EDV để thâm nhập và làm suy yếu tế bào ung thư bằng cách tiết ra phân tử axit Ribonucleic (siRNA). SiRNA làm ngưng trệ quá trình DNA sản xuất protein vốn giúp tế bào ung thư có thể kháng thuốc hóa trị. Sau đó, một đợt EDV thứ hai sẽ tiêu diệt tế bào ung thư bằng thuốc hóa trị.

Biện pháp "con ngựa thành Troy" có khả năng tiêu diệt trực tiếp tế bào ung thư mà không ảnh hưởng tới các mô khác trong cơ thể. Hiện nay, các bác sĩ điều trị ung thư thường sử dụng phương pháp tiêm hay uống thuốc theo liệu pháp hóa trị, khiến cả tế bào lành và ung thư đều bị tiêu diệt, ảnh hưởng đến sức khỏe bệnh nhân.

Ứng dụng cơ chế can thiệp RNAi trừ sâu bệnh

RNAi kiểm soát côn trùng thuộc Coleoptera. Côn trùng thuộc Coleoptera và Lepidoptera hiện được nghiên cứu về tính kháng của cây trồng nhờ protein BT sau khi thực hiện chuyển nạp gene. Một cách tiếp cận mới đối với việc kiểm soát này là sử dụng RNA can thiệp (RNAi) được các nhà khoa học của Monsanto ve Devgen N.V. thực hiện. Báo cáo khoa học được công bố trên tạp chí Nature Biotechnology.

RNAi-làm im lặng những gene cần thiết của côn trùng gây hại cây trồng, làm chúng dừng hấp thu dinh dưỡng và làm chất ấu trùng. Các nhà khoa học này đã ứng dụng RNAi để kiểm soát côn trùng gây hại rễ bắp (thuật ngữ tiếng Anh là: western corn rootworm = WCR) làm mô hình mẫu cho những nghiên cứu tiếp theo.

Phân tử RNA dây kép (dsRNA) với trình tự các cặp gốc, bổ sung cho các gen ATPase và tubulin (cytoskeletal component). Chúng thể hiện trong giống bắp biến đổi gen. Cây transgenic thể hiện sự suy giảm có ý nghĩa thiệt hại do chích hút (WCR). Tiếp cận phương pháp này, các nhà nghiên cứu còn quan sát được sự chết của ấu trùng khi phân tử dsRNA được chèn vào hai côn trùng "southern root worm" và "Colorado potato beetle". Phân tử dsRNA kiểm soát được sâu đục quả trong bông vải (boll weevil larvae), tuy nhiên, không gây ảnh hưởng đến sự chết.

Việc sử dụng RNAi để kiểm soát côn trùng gây hại cây trồng sẽ bổ sung đáng kể cho chiến lược giống chuyển gene Bt (protein diệt côn trùng) trên cây bắp, bông vải, đậu nành.

Triển vọng của việc nghiên cứu ứng dụng RNAi

Việc nghiên cứu ứng dụng cơ chế can thiệp RNA có nhiều triển vọng to lớn mà con người có thể không ngờ tới được. Một số hướng nghiên cứu chính như:

1. Can thiệp RNA chống lại sự nhiễm virus.

2. Can thiệp RNA bảo đảm ổn định hệ gen bằng cách chống lại các yếu tố di truyền vận động (transposon).

3. Can thiệp RNA như cơ chế kiềm chế tổng hợp protein và điều khiển sự phát triển của tổ chức.

4. Can thiệp RNA như cơ chế giữ gìn nhiễm sắc tử cô đặc và tăng cường phiên mã.

5. Can thiệp RNA cống hiến một công cụ thí nghiệm mới để kiềm chế gene chuyên biệt.

6. Can thiệp RNA phải là một giải quyết hữu ích trong điều trị bệnh di truyền trong tương lai